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The spin correlation in top quark production:

QCD corrections vs anomalous couplings ∗
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We discuss top quark production and its subsequent decay at lepton colliders including both QCD corrections

and anomalous γ/Z − tt̄ couplings. The off-diagonal spin basis for the top and anti-top quarks is shown to be

useful to probe the anomalous couplings.

1. Introduction

Since the discovery of the top quark, with a
large mass [1], its properties have been widely
discussed to obtain a better understanding of the
electroweak symmetry breaking and to search for
hints of physics beyond the standard model (SM).
It has been known that top quarks decay before
hadronization [2]. Therefore there will be sizable
angular correlations between the decay products
of the top quark and the spin of the top quark [3].
Based on this observation, it is expected that we
can either test the SM or obtain some signal from
new physics by investigating the angular distri-
butions of the decay products from polarized top
quarks.

Applying the narrow width approximation to
the top quarks, we can discuss the production
process and decay process separately. There are
many papers on the spin correlations in top quark
production and also the angular distributions of
decay products by combining the production with
the decay process [4]. Although it was common
to use the helicity basis to decompose the top
quark spin, it has been pointed out by Mahlon,
Parke and Shadmi [5] that there is a more optimal
decomposition of the top quark spin depending on
the process and the center of energy.

On the other hand, there are also many detailed
studies on the effects of new operators which

∗Talk presented by J. Kodaira at Loops and Legs 2000,

Bastei, Germany, April 9-14, 2000.

might come from physics beyond the SM [6].
The fact that the SM is consistent with the data
within the present experimental accuracy tells us
that the size of the effects of new physics is at
most comparable to or smaller than the radia-
tive corrections in the SM. Therefore it might be
important to estimate also the effects of the SM
radiative corrections.

In this talk, we will discuss the QCD correc-
tions to the spin correlations in the top quark
productions at lepton colliders and present the
angular distribution of the decay product includ-
ing both the QCD corrections and the so-called
anomalous couplings for the γ/Z − tt̄ interaction.

2. QCD corrections to the spin correlation

We first discuss the QCD correction to the spin
dependent cross section for the top quark produc-
tion from the polarized e−e+ [7]. The spin direc-
tion of the top quark is parameterized by ξ as in
Fig.1 at the top quark rest frame. The anti-top
quark spin state is similarly defined by the same
ξ. The tree level cross section is easily calculated
to be,

dσ

d cos θ∗
(

e−Le+

R → t↑t̄↑
)

=
dσ

d cos θ∗
(

e−Le+

R → t↓t̄↓
)

=

(

3πα2

2s
β

)

|(ALR cos ξ − BLR sin ξ)|2 (1)

dσ

d cos θ∗
(

e−Le+

R → t↑t̄↓ or t↓t̄↑
)



e- e+

st

t

t

ξ

Figure 1. The spin vector st for the top quark is
defined in the top quark rest frame.

=

(

3πα2

2s
β

)

|(ALR sin ξ + BLR cos ξ ± DLR)|2

where

ALR =
[

(fLL + fLR)
√

1 − β2 sin θ∗
]

/2

BLR =
[

fLL(cos θ∗ + β) + fLR(cos θ∗ − β)
]

/2

DLR =
[

fLL(1 + β cos θ∗) + fLR(1 − β cos θ∗)
]

/2

fIJ = −Qt +
Qe

I Qt
J

sin2 θW

s

s − M2
Z

Here α is the QED fine structure constant, θ∗(β)
is the scattering angle (the speed) of top quark
in the zero momentum frame and Qe

I(Q
t
J ) is the

electron (top quark) coupling to the Z boson. MZ

is the Z-boson mass and θW is the Weinberg an-
gle. From eq.(1), one can see that the choice
tan ξ = ALR/BLR results in a large asymmetry.
This spin basis is called “off-diagonal” basis [5].
Since |fLL| � |fLR| numerically, it turns out that
only one spin configuration dominates the cross
section. On the other hand, in the helicity basis
(cos ξ = ±1) all configurations significantly con-
tribute to the cross section.

The QCD corrections might modify the tree
level results since they induce an anomalous γ/Z
magnetic moment for the top quark and allow for
single real gluon emission. Since the top and anti-
top quarks are not necessarily produced back to
back at the one loop level, we discuss the single

spin correlation. Here we show only the numeri-
cal results of our calculations [7].

Table I summarizes the strong coupling con-
stant αs, β, and the tree and O(αs) level total
cross sections in e−Le+ scattering.

√
s 400 GeV 800 GeV

β 0.484 0.899
αs(s) 0.0980 0.0910

σTotal Tree (pb) 0.8707 0.3531
σTotal O(αs) (pb) 1.113 0.3734

Table I: The values of β, αs, tree and next to
leading order cross sections.

To see the effects of the QCD corrections to the
spin correlation, we write the cross section as a
sum of two terms.

dσ

d cos θ∗
(e−Le+

R → t↑↓X)

= (1 + κ)
dσ0

d cos θ∗
(e−Le+

R → t↑↓X)

+
dσR

d cos θ∗
(e−Le+

R → t↑↓X)

The first term is a part which is proportional to
the tree level cross section. Therefore, 1 + κ is
simply the multiplicative enhancement (K-) fac-
tor. Whereas the second term give the O(αs)
deviations to the spin correlations. Our numeri-
cal studies show that the O(αs) QCD corrections
enhance the tree level result (the first term) and
only slightly modifies the spin orientation of the
produced top quark (the second term). The ratio
of the second term to the first one is of order a
few percent. In the kinematical region where the
emitted gluon has small energy, it is natural to
expect that the real gluon emission effects intro-
duce only a multiplicative correction to the tree
level result. Therefore only “hard” gluon emis-
sion could possibly modify the top quark spin
orientation. What we have found, by explicit cal-
culation, is that this effect is numerically very
small. In Table II, we give the fraction of the
top quarks in the subdominant spin configuration
with K factor for e−Le+ scattering,

σ
(

e−Le+ → t↓↑X(t̄ or t̄g)
)

/σTotal
L

for the helicity and off-diagonal bases. These re-
sults suggest that the soft gluon approximation



(SGA) will be sufficient to estimate the 1-loop
QCD corrections. Actually, we have checked that
the SGA can reproduce the full results quite ac-
curately by choosing an appropriate cut off ωmax

for the soft gluon. The difference between the
SGA using this ωmax and the full 1-loop correc-
tion is smaller than the expected size of the 2-loop
corrections.
√

s (GeV) κ Helicity Off-Diagonal

0.336 0.00124
400 0.278

0.332 0.00150

0.168 0.0265
800 0.057

0.165 0.0319

Table II: The fraction of the e−Le+ cross section
in the subdominant spin. The upper (lower) line

corresponds to the tree (one-loop) level.

3. Decay distribution with anomalous cou-

pling

Although the QCD correction to the top quark
production is not so large, it should be included to
detect “small” signals from possible new physics
beyond the SM. We analyze the top quark pro-
duction and its subsequent decay at lepton collid-
ers including both QCD corrections and anoma-
lous γ/Z − tt̄ couplings.

The process we are considering now is, in prin-
ciple, a very complicated e−e+ → 6 one. How-
ever, it has been known that the narrow width
approximation for the top quark, which is valid
for Γt � mt (1.02 ≤ Γt ≤ 1.56 GeV for 160
≤ mt ≤ 180 GeV), makes the situation very sim-
ple. Namely, we can separate the physics into the
top production and the decay density matrices [8].

Let us first discuss the top quark production
(density matrix). We assume a general form for
the t-t̄-Z/γ vertex as,

ΓV
µ = gV

{

γµ

[

QV
Lω− + QV

Rω+

]

+
(t − t̄)µ

2mt

[

GV
L ω− + GV

Rω+

]

}

(2)

where t, t̄ are momenta of the top and anti-

top quarks, mt is the top mass, ω−/ω+ is the
left/right projection operator, and V = Z or γ.
For the e-ē-Z/γ vertex, we use the well estab-
lished SM interaction. At the tree level in the
SM, the coupling constants GV

L,R are zero. The

combination of form factors Gγ,Z
R + Gγ,Z

L ≡ fγ,Z
2

is induced even at the one-loop level in the SM.
Whereas, another combination Gγ,Z

R − Gγ,Z
L ≡

ifγ,Z
3 which is related to a CP violating interac-

tion, called electric and weak dipole form factors
(EDM and WDM) appears as, at least, the two-
loop order effect. Thus they are negligibly small
and non-zero value of fγ,Z

3 is considered to be a
contribution from new physics beyond the SM.
We presume some non-zero value for fγ,Z

3 and
consider the top production and its decay. The
QCD one-loop correction is easily incorporated
into this analysis if one remembers that the one
loop effect is very well approximated by the SGA.
In the SGA, QCD effects can be expressed by the
modified t-t̄-Z/γ vertex [7], eq.(2).

QV
LR ∼ 1 + O(αs) , GV

R + GV
L ∼ O(αs)

GV
R − GV

L = O(α2
s) ∼ 0.

The top quark production amplitudes now read,

M(e−Le+

R → t↑t̄↑, t↓t̄↓)

= ∓4πα
[

ÂLR cos ξ − B̂LR sin ξ ± iELR

]

M(e−Le+

R → t↑t̄↓, t↓t̄↑)

= 4πα
[

ÂLR sin ξ + B̂LR cos ξ ± D̂LR

]

.

(3)

where we have chosen the phases of spinors to be
real. The coefficients with ˆ receive the contribu-
tion from the QCD corrections,

ĈLR = CLR + O(αs).

For the explicit expressions, see ref.[7]. The func-

tion ELR linearly depends on fγ,Z
3 and is given

by,

ELR =
1

2
(hLL − hLR)

β sin θ∗
√

1 − β2
,

with

hIJ = −Gγ
J(t) +

QZ
I (e)GZ

J (t)

sin2 θW

s

s − M2
Z

.



The problem now is how to detect the anoma-
lous coupling in the top quark events. It is eas-
ily understood that the effects of the anomalous
coupling on the top quark production cross sec-
tions should be small and undetectable since the
anomalous coupling is assumed to be compara-
ble to or smaller than the QCD correction in size
and we already know the QCD correction itself to
be small. Therefore we consider the angular dis-
tribution of top decay products which depends
linearly on fγ,Z

3 .
In the decay process, we assume V-A interac-

tion of the SM in t-b-W vertex. We employ the
semi-leptonic decay, t → bW → bl̄ν for simplicity.
Neglecting the mass of the final state fermions,
the decay amplitude Dst

(for tst
→ bl̄ν) is known

to be given by

D↑ =
2g2Vtb

√

b · ν mtEl̄

2ν · l̄ − M2
W + iMW ΓW

cos
θl̄

2

D↓ =
2g2Vtb

√

b · ν mtEl̄

2ν · l̄ − M2
W + iMW ΓW

sin
θl̄

2
e−iφ

l̄

(4)

where the names of final particles are used as
substitute for their momenta. MW and Vtb are
the masses of the W boson and the Cabbibo–
Kobayashi–Maskawa (CKM) matrix.

z

x

y

φl

θl

st

b

lν

Figure 2. The definition of polar and azimuthal
angles.

The polar and azimuthal angles of the l̄ momen-
tum (θl̄, φl̄) are defined in the top quark rest

frame, in which z-axis coincides with the chosen
spin axis st and x − z is the production plane,
Fig.2. We have a similar expression D̄↑↓ also for
the anti-top quark decay.

Now, the differential cross-section for the pro-
cess e−e+ → tt̄ followed by the decays t →
Xt , t̄ → X̄t is described in terms of the produc-
tion and decay density matrices ρst s̄t,s′

t
s̄′

t
, τsts′

t

and τ̄s̄t s̄′

t
as,

dσ
(

e−e+ → tt̄ → XtX̄t

)

∝
∑

st,s̄t,s
′

t
,s̄′

t

ρsts̄t,s′

t
s̄′

t
τsts′

t
τ̄s̄t s̄′

t
dL,

where dL is the phase space of the final particles
and the density matrices can be obtained from
eqs.(3) and (4) [8].

ρst s̄t,s′

t
s̄′

t
= Mst s̄t

M∗
s′

t
s̄′

t

τsts′

t
∝ Dst

D∗
s′

t

∝
(

1 + cosθl̄ sin θl̄e
iφ

l̄

sin θl̄e
−iφl 1 − cos θl̄

)

sts′

t

τ̄s̄t s̄′

t
is also given by the similar expression. When

we calculated the production density matrix, we
have kept terms up to linear in αs and fγ,Z

3 for
the consistency of our approximation. We have
also applied the narrow width approximation for
the W boson in eq.(4) to derive the above result.
From this expression, we see that there are terms
which linearly depend on fγ,Z

3 in the angular dis-
tributions of the charged leptons and the interfer-
ence terms between amplitudes for different spin
configuration play an important role.

Here we take an advantage of the freedom for
the choice of the spin basis to detect the effect
of the anomalous couplings. Note that the dif-
ferential cross section itself is (should be) inde-
pendent of the choice of the spin basis. However,
the “choice of the variables” can depend on the
spin basis. We have calculated the angular dis-
tribution of l̄ in the top quark decay after inte-
grating out other variables. We plot the θl̄ − φl̄

correlations both in the helicity (Fig.3) and the
off-diagonal basis (Fig.4). We set

√
s = 400 GeV

and assume fγ,Z
3 = 0.2 just for an illustration.

The both figures are for cosθ∗ = 0. However the
pattern of the correlation is essentially the same



for all scattering angles. One can see that it is
very hard to identify the effects of the anomalous
couplings in Fig. 3, This situation changes dras-
tically if we take the off-diagonal basis (Fig. 4).
As the SM result produces almost no azimuthal
angular dependence in this basis (these azimuthal
angular dependencies are caused by interferences
effects in a given spin basis and these are very
small in the off-diagonal basis), we recognize the
effect of the anomalous coupling as a deviation
from the flat distribution. For the value of the
anomalous coupling we have chosen, these new
interactions change the shape nearly by 10%.
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Figure 3. The double differential cross section
d2σ/d cos θl̄dφl̄ in the helicity basis. The left
(right) figure correspond to the cross section with-

out (with) the anomalous fγ,Z
3 coupling. Vertical

and horizontal axes correspond to the azimuthal
φl̄ and the polar angle cosθl̄, respectively.
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Figure 4. The double differential cross section
in the off-diagonal basis. The left (right) figure
correspond to the cross section without (with) the

anomalous fγ,Z
3 coupling. The axes are the same

as in Fig.3

In order to show the effect of the fγ,Z
3 more

clearly, we partially integrate the cross section
over the azimuthal angle and define the azimuthal
asymmetry. Let σ1,2 denote the partially inte-
grated cross-sections over the azimuthal angle,

σ1(θ∗) =

∫ π

0

dφl

(

dσ

d cos θ∗dφl

)

,

σ2(θ∗) =

∫ 2π

π

dφl̄

(

dσ

d cos θ∗dφl

)

where other variables have been integrated out
already. We define the azimuthal asymmetry in
order to pull out the effect of anomalous interac-
tions,

A(θ∗) =
σ2(θ∗) − σ1(θ∗)

σ2(θ∗) + σ1(θ∗)
.

We plot the asymmetry as a function of cosθ∗ in
Fig.5 at

√
s = 400GeV for the e+

Re−L and e+

Le−R
annihilation.
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Figure 5. Azimuthal asymmetry as a function of
cos θ∗ in the off-diagonal basis.

In this figure, the dot-dashed line comes from
the SM (with QCD corrections) and others from
anomalous couplings. At the SM tree level, the
asymmetry is exactly zero and the QCD radia-
tive corrections induce a numerically negligible
asymmetry as shown in Fig.6. The asymmetry
strongly depends on the value and the sign of
fγ,Z
3 . In the case of e+

Re−L , the effects of the
anomalous interactions fγ

3 and fZ
3 are additive



and have a larger asymmetry when their signs
are the same. But when their signs are oppo-
site, these effects become subtractive and lead to
a smaller asymmetry. This feature changes in
the case of e+

Le−R. In the off-diagonal basis, the
anomalous couplings produce the asymmetry of
the order 10%. In the helicity basis, however, the
deviation from the SM is only around 1.5% since
there exists some amount of asymmetry already
in the SM.
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Figure 6. Azimuthal asymmetry induced by the
QCD correction in the off-diagonal basis.

4. Conclusion

We have studied the top quark pair production
and subsequent decays at lepton colliders. First,
we reported that the contribution of QCD correc-
tions is mainly just the enhancement of the tree
level result (K-factor) and does not change the
spin configuration of produced top quarks. For a
realistic next lepton colliders, let us say β ∼ 0.5,
the helicity basis is a poor choice since all spin
configurations contribute to the production pro-
cess. This means that there is a significant in-
terference between the intermediate spin states.
On the other hand, the off-diagonal basis is a
good choice since the contribution from some spin
states is zero or negligible even after including the
QCD corrections. This small interference makes
the correlations between decay products and the
top spin very strong. Using this advantage, we
analyzed, secondly, the angular dependence of the
decay product of the top quark including both the

QCD corrections and the anomalous couplings.
We have shown that the asymmetry amount to
the order of 10% in the off-diagonal basis with
chosen parameters which may be detectable.

Although we have considered the anomalous
couplings only for the production process and
showed the results for their particular values, the
inclusion of new effects to the decay process and
more detailed phenomenological analyses for var-
ious choices of the new interactions are quite
straightforward exercises.
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